Barisan geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama yaitu r. Nilai suku pertama dilambangkan dengan a.
Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat dihitung dengan rumus berikut.
Deret geometri adalah penjumlahan suku-suku dari barisan geometri.
Penjumlahan dari suku-suku pertama sampai suku ke-n barisan geometri dapat dihitung dengan rumus berikut.
dengan syarat r < 1
atau
dengan syarat r > 1
Contoh Soal 1:
Selembar kertas dipotong menjadi dua bagian. Setiap bagian dipotong menjadi dua dan seterusnya. Jumlah potongan kertas setelah potongan kelima sama dengan …
Pembahasan:
Diketahui: a = 1 dan r = 2
Ditanya:
Jawab:
Jadi, jumlah potongan kertas setelah potongan kelima adalah 32
Contoh Soal 2:
Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah …
Pembahasan :
Diketahui: a = 3
Jawab:
Sebelum kita mencari nilai dari , kita akan mencari nilai r terlebih dahulu.
Ingat kembali bahwa sehingga dapat ditulis menjadi
š¯‘†ehingga,
Jadi, suku ke-7 deret tersebut adalah 192.
Contoh Soal 3:
Diketahui suku ke-5 dari barisan geometri adalah 243, hasil bagi suku ke-9 dengan suku ke-6 adalah 27. Suku ke-2 dari barisan tersebut adalah …
Pembahasan:
Sebelum kita mencari nilai dari , kita akan mencari nilai a dan r terlebih dahulu.
Ingat kembali maka
Substitusikan r = 3 ke persamaan
sehingga
Jadi, suku ke-2 dari barisan tersebut adalah 9.
Contoh Soal 4:
Jumlah 6 suku pertama deret geometri 2 + 6 + 18 + … adalah …
Pembahasan:
Diketahui: a = 2
r = 3 karena r lebih besar dari 1 maka rumusnya spt di bawah ini !
ditanyakan
Jawab:
Jadi, jumlah 6 suku pertama deret geometri tersebut adalah 728
KERJAKAN : TUGAS INDIVIDU
Tidak ada komentar:
Posting Komentar