Minggu, 02 Agustus 2020

PEMBELAJARAN DARING 3 AGUSTUS 2020

Pola Bilangan Part 2

Assalamualaikum Wr.Wb


Selamat pagi anak2 ku semuanya....selalu semangat untuk belajar di rumah ya....jaga kesehatan dan tetap di rumah saja.Semoga kalian dalam keadaan sehat selalu.Sebelum pembelajaran di mulai terlebih dahulu kalian berdoa.


Terlebih dahulu pahamilah video di bawah ini ya !


Pola BilanganPascal

Bilangan ini terbentuk dari sebuah aturan geometri yang berisi susunan koefisien binomial yang bentuknya menyerupai segitiga.


 

 Misalnya kamu ingin mencari suku ke 10, kamu bisa langsung masukkan ke dalam rumusnya saja. Jadi,

Bilangan Fibonacci

Pada bagian sebelumnya telah dikemukakan bahwa bilangan Fibonacci merupakan penjumlahan dua bilangan sebelumnya.

Dua bilangan Fibonacci pertama yaitu bilangan 0 dan 1. Sehingga suku-suku berikutnya dari barisan bilangan Fibonacci yaitu sebagai berikut.

Bilangan pertama: 0

Bilangan kedua: 1

Bilangan ketiga: 0 + 1 = 1

Bilangan keempat: 1 + 1 = 2

Bilangan kelima: 1 + 2 = 3

Bilangan keenam: 2 + 3 = 5

Bilangan ketujuh: 3 + 5 = 8

Bilangan kedelapan: 5 + 8 = 13

Jika di tulis bilangan fibonaccinya = 0,1,1,2,3,5,8,13.....

dan seterusnya sehingga bilangan selanjutnya merupakan penjumlahan dari dua bilangan sebelumnya.

Barisan Aritmatika

Barisan Aritmetika adalah suatu barisan bilangan dengan pola tertentu berupa penjumlahan yang memiliki beda atau selisih yang sama/tetap.

Rumusan Barisan Aritmatika

Suku-sukunya dinyatakan dengan rumus berikut :

U1, U2, U3, ….Un
a, a+ b, a+2b, a + 3b, …., a + (n-1) b

Selisih (beda) dinyatakan dengan b

b = U2 – U1 

Suku ke n barisan aritmatika (Un) dinyatakan dengan rumus:

Un = a + (n-1) b

Keterangan :

Un = suku ke n dengan n = 1,2,3, …
a = suku pertama
U1 = a
b = selisih/beda

n = banyak suku

Un= Suku ke-n

U2 = Suku ke -2

U3 = Suku ke - 3

Contoh Barisan Aritmatika

1.      Suku pertama dari barisan aritmatika adalah 3 dan bedanya = 4, suku ke-10 dari barisan aritmatika tersebut adalah …
Penyelesaian:
a = 3
b = 4


2.     Diketahui barisan aritmatika sebagai berikut: 5, 8, 11, …

Tentukan: Nilai suku ke-15 !
Penyelesaian:


CONTOH

Diketahui barisan aritmetika  3, 8, 13, …

1.      Tentukan suku ke-10 dan rumus suku ke-n barisan tersebut!

2.     Suku keberapakah yang nilainya 198 ?


Jawab :

  • Dari barisan aritmetika 3, 8, 13, … diperoleh suku pertama a = 3 dan beda b = 8 – 3 = 5.

·         Un   = a + (n – 1)b

U10  = 3 + (10 – 1)5

= 3 + 9 x 5

= 3 + 45

= 48

Un   = a + (n – 1)b

= 3 + (n – 1)5

= 3 + 5n – 5

= 5n – 2

      Misalkan Un = 198, maka berlaku :

Un  = 198

5n – 2 = 198

5n  = 200

n = 40

Jadi 198 adalah suku ke- 40

Rumus Deret Aritmatika

Bentuk umum deret aritmatika :

a + (a + b) + (a+2b) + (a+3b) + … + (a+(n-1)b )

Jumlah suku hingga suku ke n pada barisan aritmatika dirumuskan dengan:

Sn = (2a + (n-1) b ) atau Sn = ( a + Un )

 

Sisipan pada Barisan Aritmatika

Apabila antara dua suku barisan aritmatika disisipkan k buah bilangan (suku baru) sehingga membentuk barisan aritmatika baru, maka:

Beda barisan aritmatika setelah disispkan k buah suku akan berubah dan dirumuskan:


Keterangan:

b’ = beda barisan aritmatika setelah disisipkan k buah suku

n’ = banyak suku barisan aritmatika baru

n = banyak suku barisan aritmatika lama

k = banyak suku yang disisipkan

Sn’ = jumlah n suku pertama setelah disisipkan k buah suku

Contoh Sisipan Barisan Aritmatika

Antara bilangan 20 dan 116 disisipkan 11 bilangan sehingga bersama kedua bilangan semula terjadi deret hitung. Maka jumlah deret hitung yang terjadi adalah …


Penyelesaian:

Diketahui: deret aritmatika mula-mula: 20 + 116

a = 20

Un = 116

n = 2

k = 11 bilangan

banyaknya suku baru : n’ = n + (n-1) k

= 2 + (2-1) 11 = 2 + 11 = 13

Jadi, jumlah deret aritmatika setelah sisipan adalah 884


Contoh Soal Deret Aritmatika

Suatu deret aritmatika 5, 15, 25, 35, …
Berapakah jumlah 10 suku pertama dari deret aritmatika tersebut?


Jawab:

n = 10
U1 = a = 5
b = 15 – 5 = 25 – 15 = 10

Sn = (2a + (n-1) b )
S10 = ( 2. 5 + (10 -1) 10)
= 5 ( 10 + 9.10)
= 5 . 100 = 500


 contoh 

Jumlah 20 suku yang pertama dari barisan 20 + 15 + 10 +…… adalah

 jawab :

a = 20

b = U2-U1

   = 15-20

   =   -5

Sn =  n (a + Un)

Un = a + (n – 1) b

U20 = 20 + (20-1)(-5)

        = 20 + (19) (-5)

        = 20 – 95

        = – 75

S20 =  . 20 (20 + (-75))

       = 10 (-55)

S20 = – 550

Kerjakan : TUGAS INDIVIDU

 

 


2 komentar:

DIMENSI TIGA

Kedudukan Titik, Garis, dan Bidang pada Bangun Ruang ASSALAMUALAIKUM WR.WB SEBELUM KALIAN PEMBELAJARAN ONLINE HARI INI .TERLEBIH DAHULU KALI...